Equation with residuated functions

نویسنده

  • K. Zimmermann
چکیده

The structure of solution-sets for the equation F (x) = G(y) is discussed, where F, G are given residuated functions mapping between partially-ordered sets. An algorithm is proposed which produces a solution in the event of finite termination: this solution is maximal relative to initial trial values of x, y. Properties are defined which are sufficient for finite termination. The particular case of max-based linear algebra is discussed, with application to the synchronisation problem for discrete-event systems; here, if data are rational, finite termination is assured. Numerical examples are given. For more general residuated real functions, lower semicontinuity is sufficient for convergence to a solution, if one exists.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dense Elements and Classes of Residuated Lattices

In this paper we study the dense elements and the radical of a residuated lattice, residuated lattices with lifting Boolean center, simple, local, semilocal and quasi-local residuated lattices. BL-algebras have lifting Boolean center; moreover, Glivenko residuated lattices which fulfill the equation (¬ a → ¬ b) → ¬ b = (¬ b → ¬ a) → ¬ a have lifting Boolean center.

متن کامل

(L, e)-filters on complete residuated lattices

We introduce the notion of (L, e)-filters with fuzzy partially order e on complete residuated lattice L. We investigate (L, e)-filters induced by the family of (L, e)-filters and functions. In fact, we study the initial and final structures for the family of (L, e)-filters and functions. From this result, we define the product and co-product for the family of (L, e)-filters and functions.

متن کامل

Commutative integral bounded residuated lattices with an added involution

By a symmetric residuated lattice we understand an algebra A = (A,∨,∧, ∗,→,∼, 1, 0) such that (A,∨,∧, ∗,→, 1, 0) is a commutative integral bounded residuated lattice and the equations ∼∼ x = x and ∼ (x ∨ y) =∼ x∧ ∼ y are satisfied. The aim of the paper is to investigate properties of the unary operation ε defined by the prescription εx :=∼ x → 0. We give necessary and sufficient conditions for ...

متن کامل

Residuated Lattices

The theory of residuated lattices, first proposed by Ward and Dilworth [4], is formalised in Isabelle/HOL. This includes concepts of residuated functions; their adjoints and conjugates. It also contains necessary and sufficient conditions for the existence of these operations in an arbitrary lattice. The mathematical components for residuated lattices are linked to the AFP entry for relation al...

متن کامل

Residuated fuzzy logics with an involutive negation

Residuated fuzzy logic calculi are related to continuous t-norms, which are used as truth functions for conjunction, and their residua as truth functions for implication. In these logics, a negation is also definable from the implication and the truth constant 0, namely ¬φ isφ → 0. However, this negation behaves quite differently depending on the t-norm. For a nilpotent t-norm (a t-norm which i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010